

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 41

 Research Article ISSN: 2395 – 5597

METHODOLOGIES OF SELF-HEALING AND SYSTEM CONFRONTS

(THE AUTONOMIC COMPUTING)
Raja Adeel Ahmed*

1
, Shamasur Rehman

2
, Naveed Anjum

2
, Teklay Tezfazghi

3

*1
Computer Science Department, Eritrea Institute of Technology, Asmara, Eritrea, North East Africa.

2
Mathematics Department, Eritrea Institute of Technology, Asmara, Eritrea, North East Africa.

3
Computer Engineering Department, Eritrea Institute of Technology, Asmara, Eritrea, North East Africa.

.

INTRODUCTION

For decades, the advancement of technology and

science has mirrored the increase of complexity in

many computer environments. Recently, the

advancement of computer technology and science

has not been increasing at the same pace as

complexity in computer environments. This

unbalance in advancement creates a major obstacle.

The major obstacle that concerns researchers is

centered on complexity. However, as the scale and

ABSTRACT

Autonomic computing was introduced by IBM in 2001. Autonomic computing is a computer environment that

can detect and adjust its system automatically to manage itself without the assistance of any human interaction.

Autonomic computing is emerging as a significant new strategic and holistic approach to the design of complex

distributed computer systems. It is inspired by the functioning of the human nervous system and is aimed at

designing and building systems that are self-managing. Self-management is achieved through key aspects such

as self-governing, self-adaptation, self-organization, self-optimization, self-configuration, self-diagnosis of

faults, self-protection, self-healing, self-recovery, and autonomy. In this paper, we focus on the self-healing

branch of the research and provide an overview of the current existing approaches. The paper is introduced by

an outline of the origins of self-healing. Based on the principles of autonomic computing and self-adapting

system research, we identify self-healing systems’ fundamental principles. The extracted principles support our

analysis of the collected approaches.

KEY WORDS

Autonomic computing, Self-adaptation, Self-organization, Self-optimization, Self-configuration, Self-healing

and Self-recovery.

.

Author of correspondence:

Raja Adeel Ahmed,

Computer Science Department,

Eritrea Institute of Technology,

Asmara, Eritrea, North East Africa.

Email: adeelrajj@yahoo.com

International Journal of Engineering

and

Robot Technology

Journal home page: www.ijerobot.com

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 42

complexity of these systems and applications grow,

their development, configuration and management

challenges are beginning to break current paradigms,

overwhelm the capabilities of existing tools,

methodologies, rapidly render the system,

applications, brittle, unmanageable, and insecure
1
.

As complexity increases, computer environments are

being impacted with more failures and downtown.

Most frequently cited outages included
2
.

In Systems
Operational error, user error, third-party software

error, internally developed software problem,

inadequate change control, lack of automated

processes.

In Networks
Performance overload, peak load problems,

insufficient bandwidth.

In Database
Out of disk space, log file full, performance

overload.

In Applications
 Application error, inadequate change control,

operational error, non-automated application

exceptions.

 Researchers became very concerned about

the current epidemic of computer

environments being destroyed due to

complexity. For this purpose, researchers

were faced with the task of finding an

alternative approach to complexity. After

exploring multiple methodologies,

researchers finally developed a solution to

the problem of complexity. The methodology

researchers used to overcome the barrier of

complexity is called autonomic computing.

 Autonomic computing is a computer

environment that can detect and adjust its

system automatically to heal itself without

the assistance of any human interaction.

Figure No.1 displays a typical procedure

implemented in various IT organizations.

Therefore, the IT industry was in need for a

computer system that would foresee the users

need and allow users to focus more on

completing their work tasks and less on

troubleshooting their computer system.

Autonomic computing was conceived to

lessen the spiraling demands for skilled IT

resources, reduce complexity, to drive

computing into a new era that may better

exploit its potential to support higher order

thinking and decision making. Implementing

an autonomic computing system will help

companies eliminate the increasing costs of

restoring hardware and software failures.

This methodology could help IT

professionals develop more reliable and

dependable systems within computer

environments. Consequently, autonomic

computing will effectively prevent

downtimes and system failures. In addition to

less downtimes and system failure, the

production rate for computer environments

controlled by autonomic systems will

increase dramatically. For that reason,

autonomic computing is emerging

significantly in the IT industry.

Self-healing Principles

In this part we will describe the main principles of

self-healing systems. It will help to understand the

design decisions of the researched approaches and

their underlying structures. Starting with a current

definition of self-healing systems, we identify the

important parts of a self-healing system to give a

detailed insight into their purpose, composition, and

functionality.

What is self-healing?

Self-Healing denotes the system ability to examine

find, diagnose and react to system malfunctions.

Self-healing components or applications must be

able to observe system failures, evaluating

constraints imposed by the outside, and to apply

appropriate corrections. In order to automatically

discover system malfunctions or possible futures

failures, it is needful to know the expected system

behavior. Autonomic systems must have knowledge

about own behavior then they must have a

knowledge in order to determine if the actual

behavior is consistent and expected in relation of the

environment. In new contexts or in different

scenarios, new system behaviors can be observed

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 43

and the knowledge module must evolve with the

environment
3
.

Self-Healing systems basically endure a process in

order to maintain satisfactory quality of service of

the principal system during runtime in the presence

of any fault. The first cycle is called the monitoring

cycle. During the monitoring cycle, the systems

monitor will inspect the computer environment for

any improper conduct. After the monitor’s

inspections are complete, it will send the data

gathered through current observations to the next

stage. The second phase of the cycle is called error

detection and diagnosis; if the diagnosis reports that

there is no fault in the system then it will loop back

to the monitor for more observations. If there is an

error detected by the monitor, the error detection

cycle will report it to the next stage of the cycle. The

third stage of the cycle is known as analysis and

selection of a repair operation. At this stage, the fault

is analyzed and a method of repairing is determined

at this part of the cycle. After the repair operation is

determined, the report is passed onto the final phase

of the cycle called execute repair and operation (self-

repair). Any repairs that are needed are completed at

this phase in the cycle. Once, the faulty areas are

self-repaired the cycle begins all over again. Since

this cycle is a closed loop, the process of self-healing

environments will continuous heals itself as depicted

in Figure No.2.

Included by IBM
4
 self-healing is one of the main

four properties defining an autonomic system,

Ghosh
8
 also provide a most recent definition of self-

healing systems:

“…a self-healing system should recover from the

abnormal (or “unhealthy”) state and return to the

normative (“healthy”) state, and function as it was

prior to disruption.”

Pierce
5
 stated that Fault-tolerant systems include

stabilization techniques and replication strategies as

essential methods for recovery. Thus, Ghosh
6

confess that self-healing systems in some cases are

seen as subsidiary to fault-tolerant systems.

Survivable systems handle malicious behavior by

containing failing components and securing the

“vital services” representing a minimal but

functioning system configuration
7,8,9

. Normally, the

focus of self-healing research is on recovery as an

elaborate process. This comprises both, methods for

stabilizing, replacing, securing and isolating, but

more essentially, strategies to repair and prevent

faults
6
 identify the key aspect of self-healing systems

as recovery oriented computing. This might also be a

reason, why some of the researched approaches

outline self-healing only as an enhanced recovery

method (e.g.
10

,
11

). Ganek and Corbi
7
 further detail

self-healing applications’ operation mode as an

organized process of detecting and dividing a faulty

component, taking it off line, fixing the failed

component, and reintroducing the fixed or

replacement component into the system without any

apparent disruption. For Ganek and Corbi
4
 the

objective of self-healing properties is to support

system’s reliability by minimizing the outages.

Additionally, self-healing systems should be able to

anticipate conflicts trying to prevent possible

failures.

To summarize, the reason for enhancing a system

with self-healing properties is to achieve continuous

availability. Compensating the dynamics of a

running system, self-healing techniques momentarily

are in charge of the maintenance of health. Enduring

continuity includes resilience against intended,

necessary adaptations and unintentional, arbitrary

behavior. Self-healing implementations work by

detecting disruptions, diagnosing failure root cause

and deriving a remedy, and recovering with a sound

strategy. Additionally, to the accuracy of the

essential sensor and actuator infrastructure, the

success depends on timely detection of system

misbehavior. This is only possible by continuously

analyzing the sensed data as well as observing the

results of necessary adaptation actions. The system

design leads to a control loop similar assembly. An

environment dependent and preferably adaptable set

of policies support remedy decisions. Possible

policies include simple sets of event dependent

instructions but also extended artificial intelligence

(AI) estimations supporting the resolution of

previously unknown faults. A conspectus of the

research on self-healing properties is given in Figure

No.3. At the bottom, the origins of the self-healing

ideas are illustrated. On the top some research based

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 44

on self-healing research is depicted. The properties

of self-healing are listed on the right.

Self-healing loop

The main design element of autonomic computing is

the autonomic component
12-14

. It is kept very abstract

to fit the internals of all the autonomic properties.

The element comprises a manager that holds five

distinct functions with individual tasks.

Monitor
The monitor gathers status information from the

system through sensors and pre-processes it for the

analyze task.

Analyze
This entity determines whether the received

monitored information must follow a designated

action. This is generally done by comparing status

information to system specific thresholds.

Plan
A running system often is full of situation specific

dynamics. Therefore, an accurate, sound, and planed

deployment of the actions demanded by analyze is

required.

Execute
Presents the entity that executes the parts of

previously conceived plans on the managed element.

Knowledge
This represents the knowledge base consumed and

produced by all four previously mentioned tasks.

The collaboration of the five tasks assembles the

work of the manager. More precisely, the subtask of

a task is to process the input and filter the output for

further processing. It becomes obvious that there is a

data-flow in the form of a loop among the tasks. This

was called the autonomic control.

In self-healing literature, the five autonomic

processes are usually reduced and included into three

main stages in a loop. Kephart and Chess
14

 identify

them as detection, diagnosis, and repair. Salehie and

Tahvildari
15

 call it a sum of self-diagnosing and self-

repairing with discovery, diagnosing, and reacting

stages. Parashar and Hariri
16

 only consider detect

and recover as the stages. Figure No.4 shows the

formation of the self-healing loop with the data-flow

among the three stages and the environmental

interfaces.

Detecting
Filters any suspicious status information received

from samples and reports detected degradations to

diagnosis.

Diagnosing
Includes root cause analysis and calculates an

appropriate recovery plan with the help of a policy

base.

Recovery
Carefully applies the planned adaptations meeting

the constraints of the system capabilities and avoids

any unpredictable side effects.

Self-healing states

The success of self-healing extensions depends on

the distinction between system’s intentional states

and degraded, unacceptable states. The operating

environment of self-healing extensions large-scale,

unreliable systems, hold various error sources,

possibly varying over time. The robustness of the

self-healing alignment must not depend on a single

element but the system as a whole should be able to

recover from failures
17

. Thus, single element failures

should have only minor impact on the whole system.

In many cases there is no fine line, clearly separating

acceptable from an unacceptable state. Instead, there

is a momentary transmission zone in between.

The most recent model presented by Ghosh et al.
6
, in

particular, features a fuzzy transition zone with an

unclear “Degraded State”. This state reflects the fact

that the adverse conditions of a systems cause self-

healing systems to drift in a still acceptable state,

however, closer to failure. This concept regards the

fact that large, unpredictable systems usually do not

suddenly quit operations when smaller portions fail,

but continue operation with possibly considerable

loss on performance. This provides recovery

techniques with additional time for actions and can

bring the system back on track without complete

disruption. The described model is depicted in

Figure No.5.

Another problem observed by Clarke and

Grumberg
18

 is the state explosion problem of large

systems with many concurrent processes. Their

observation reveals that the number of processes

may cause the number of possible states to grow

exponentially. The proposed solution to handle all

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 45

the possible states is to identify common properties.

In the case of Alpern and Schneider
19

 states are

aggregated according to patterns in the execution

history or in Clarke and Grumberg
18

 according to

equivalence classes for the running processes.

Self-healing Rules

Influenced by AI research on human behavior
20,21

,

Norman
22

 propose a three level model based on

reaction, routine, and reflection. In this model, the

three levels differ in depth of processing involved

between evaluation of surrounding world (affect)

and interpretation of world (cognition). Later,

Kephart and Walsh
23

 define three different types of

policies: Action, Goal and Utility Function with

increasing behavioral specification that correspond

the three previously presented levels. The policies

related to the corresponding model level are the

following:

Reaction
This is a type of policy that dictates an action to be

taken on a certain incidence, similar to an

IF(Condition)THEN(Action) statement. Likewise,

the reaction level is defined as one where no learning

occurs and immediate response is expected.

Routine
These policies define a desired state, respectively, a

set of states. This implies that the system must

calculate a situation depending on a set of actions to

make a transition from the current to the desired

state. A kin to this the routine level is defined as one,

where largely routine evaluation and planning

behaviors takes place.

Reflection
As a generalization of the goal policies, utility

function policies connect a value to each possible

state that is adjusted at runtime, depending on the

current state. The reflection level is described as self-

aware. It deduces the results for problem solving

from information of its history, system capabilities,

current system state, and current environment state.

A prototype evaluation presented by White
17

observes that goal-driven and utility function

policies can be key elements to achieve a degree of

self-management. Self-healing research considers

recovery as a solid planned process. Simple reactive

behavior might not be sufficient for the scope.

Instead, to recover and also maintain the system

several possible options must be balanced. The result

of self-healing policies is a directly or indirectly

caused set of actions moving the system towards a

safe state.

Fault Categories

Fault categories and root cause analysis is a

challenging task in computer networks with

composite configurations. Only a category and

identification of the fault allows deploying

acceptable recovery strategies. Faults can affect

single units or whole portions of the systems and the

two types can provoke each other because of the

dependencies. However, general categories of faults

are available in self-healing related research. The

occurrence of a fault is generally defined as an event

at runtime where the current system behavior

deviates from the intended. Ghosh
9
 provides a

comprehensive fault category for fault-tolerant

systems. Coulouris
24

 provide a category of faults in

regard to distributed systems. Table No.1 represents

a list of identified fault classes relevant to self-

healing research and their possible fault resolutions.

Kopetz
25

 explain about fault category in which

partitions failures into dependent on value or timing

by nature. A failure can be recognized consistently

by all affected parties or in the worst case only

inconsistently.

It becomes clear that especially in large, arbitrary

systems failure detection and immediate category in

most cases is not a straight forward process. A crash

failure, e.g, might be classified as an omission failure

because local detection is not available or affected

by the failure. Thus, a detected failure might be the

result of another. However, because of the many

interdependencies in large systems and possible false

detection and recovery strategy, self-healing

technologies rely on the state model presented in

Self-healing rules.

Fault Model Characteristics

The Following are typical fault model characteristics

that seem relevant
26

:

Fault duration

Faults can be permanent, intermittent (a fault that

appears only occasionally), or transient (due to an

environmental condition that appears only

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 46

occasionally). Since it is widely believed that

transient and intermittent faults outnumber

permanent faults, it is important to state the fault

duration assumption of a self-healing approach to

understand what situations it addresses.

Fault manifestation

Intuitively, not all faults are as severe as others.

Beyond that, components themselves can be

designed to exhibit specific characteristics when they

encounter faults that can make system-level self-

healing simpler. A common approach is to design

components that are fail-fast, fail-silent. However,

other systems must tolerate Byzantine faults which

are considered “arbitrary” faults. (It is worth noting

that Byzantine faults exclude systematic software

defects that occur in all nodes of a system, so the

meaning of “arbitrary” is only with respect to an

assumption of fault independence.) Beyond the

severity of the fault manifestation, there is the

severity of how it affects the system in the absence

of a self-healing response. Some faults cause

immediate system crashes. But many faults cause

less catastrophic consequences, such as system slow-

down due to excessive CPU loads, thrashing due to

memory hierarchy overloads, resource leakage, file

system overflow, and soon.

Fault source

Assumptions about the source of fault scan affect

self-healing strategies. For example, faults can occur

due to implementation defects, requirements defects,

operational mistakes, and so on. Changes in

operating environment can cause a previously

working system to stop working, as can the onset of

a malicious attack. While software is essentially

deterministic, there are situations in which it can be

argued that a random or “wear-out” model for

failures is useful, suggesting techniques such as

periodic rebooting as a self-healing mechanism.

Finally, some self-healing software is designed only

to withstand hardware failures such as loss of

memory or CPU capacity, and not software failures.

Granularity

The granularity of a failure is the size of the

component that is compromised by that fault. (The

related notion of the size of a fault containment

region is a key design parameter in fault tolerant

computers.) A fault can cause the failure of a

software module (causing an exception), a task, an

entire CPU’s computational set, or an entire

computing site. Different self-healing mechanisms

are probably appropriate depending on the

granularity of the failures and hence the granularity

of recovery actions.

Fault profile expectations

Beyond the source of the fault is the profile of fault

occurrences that is expected. Faults considered for

self-healing might be only expected faults (such as

defined exceptions or historically observed faults),

faults considered likely based on design analysis, or

faults that are unexpected. Additionally, faults might

be random and independent, might be correlated in

space or time, or might even be intentional due to

malicious intent.

Self-healing Systems vs. General Computing

Systems

Complexity in problem determination is reducing the

effectiveness of computing in many computing

environments. One of the major factors contributing

to the complexity in problem determination is the

various ways that different parts of the system report

events, conditions, errors, and alerts. For instance,

examine the ways that general computers maintain

logs for the system. These logs contain a variety of

content in differing formats because solutions are

built using disparate pieces and part, often with

products from multiple vendors
27

. Figure No.6a

illustrates today’s general computing environments

and the obstacle of combing hardware and software

components in a typical solution. Most of the

logging done today is focusing on reporting data that

a product developer considers important for

debugging the problem in a single product, as

opposed to providing data to debug a solution. This

inconsistency in both the format and the content that

is made available by products makes it more difficult

to write management tools that might ease the

complexity issues. To optimize the usefulness and

business value of existing and future e-business

solutions, major changes and improvements in

problem determination must help businesses deal

with complexity, ease cross-product problem

determination and automate the process of

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 47

identifying and fixing frequently occurring

problems.

Autonomic computing systems are the solution to

solving the problem of complexity. Refer to Figure

No.6b on how autonomic computing is going to

solve the problem determination of complexity. Let’s

begin with the resource manager. In the resource

manager, various components such as applications,

database, application server, servers, storage device,

and networks are included. These components are a

part of the troubleshooting process when a problem

occurs. In Figure No.6b, each component produces

multiple log files individually in its own format in

various locations. Because there is no cost-effective

way to change log files in legacy applications or

solutions that have already been deployed, the IBM

autonomic computing architecture includes adapters

to translate disparate logs into the common format
27

.

Adapters help keep implementation cost low, and

adapters also allow business to use applications from

independent software vendors that may not adopt

common log formats. Log formats that are familiar

enables specialist to easily look for problems in logs

and take necessary actions if needed. Figure No.6b

also illustrates an autonomic manager engine which

automates the process that a specialist would use.

For example, IBM has developed the Log and Trace

Analyzer for Autonomic Computing, which enables

the reading of logs in the common format,

correlating the logs based on different criteria (for

example, time-based or field-based (such as URLs))

and viewing the correlated log records
27

. To take the

best possible action when it discovers a problem, the

manager will rely upon other sources of knowledge.

One such source might be a symptom service. The

symptom service includes a symptom database that

contains information about how to detect patterns

that indicate problems, how to diagnose that a

specific problem has occurred, and how to resolve

that specific problem. The symptom database will

include a standardized set of interfaces and data

formats that facilitate the determination of actionable

causes from problem data. In many instances,

multiple symptom databases are possible and likely,

all presented as part of a symptom service. The

process of writing and populating knowledge bases,

such as the symptom database, is made simpler by

the existence of a common format for log data.

Symptoms will be more easily expressed using the

common set of terminology and data, alleviating the

need for symptoms to be coded using the nuances of

how, for example, an individual product says that it

has “stopped.” Once the decisions are made about

how to best resolve a problem, the autonomic

manager may then query other managers, such as a

policy engine, represented in the lower right corner

of Figure No.6b, to determine which corrective

actions can be taken. The policy engine matches

proposed solutions against rules and policies to help

ensure that an action’s possible effect on business-

critical processes is appropriate to the overall

situation. For example, the symptom database may

report that two separate actions could be used to

address a symptom. The first, which would fix the

problem, is to reboot a system. The second may be a

temporary solution, such as increasing swapper

space. In this example, if there were a policy that

stated a critical system was not to be rebooted during

business hours, the policy service would instruct the

autonomic manager to use the temporary solution;

the autonomic manager, in turn, would then provide

feedback to the resource managers, which would

make the necessary changes.

Related Applications to Autonomic Computing

Autonomic Computing brings new ideas and

concepts in reducing complexity. There have been a

number of research projects that use autonomic

computing technologies in industry and academies.

Some of them will be presented in this section.

Autonomic Computing Toolkit

Autonomic computing toolkit
28

 presents some

technologies and tools which are closely referred to

the properties and general architecture of autonomic

computing. This toolkit includes

Autonomic manager engine

It demonstrates the self-healing control process in

the architecture of autonomic computing.

Log and Trace Analyzer

It demonstrates a partial implementation of control

loops, including the part of monitoring and

analyzing.

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 48

Generic log adapter
It provides a translation from log files into a

common event format - Common Base Event in

order for common logs to be acceptable in a

autonomic computing environment.

Resource Model Builder

This Eclipse plug-in demonstrates how to build

special resources into an autonomic computing

environment using common resource model.

Dynamic Systems Initiative

Dynamic Systems Initiative (DSI)
 29

 is a Microsoft

approach to reducing system complexity. As we seen

in the general architecture of autonomic computing,

the role of knowledge in system management is also

emphasized in DSI. To benefit from the knowledge

concept, DSI defines a common schema - System

Definition Model - in order for other software’s to be

built into its operating environment. Once this model

for software is created, it can be captured in system

runtime, so that system is manageable

autonomously.

Ocean Store

Ocean Store
30

 is a global-scale persistent data

storage system from the University of California at

Berkeley. It uses an introspection layer to monitor

and analyze network information in order to improve

performance and fault management. Each data object

within Ocean Store has its own GUID and is stored

in distributed data location.

Other Applications

Optimal Grid
31

 provides a solution of the problem of

large-scale application by implementing runtime

management and dynamic rebalancing. Policy

Management for Autonomic Computing
32

implements an autonomic policy management. The

Adaptive Enterprise
33

 provides an enterprise

infrastructure used to manage enterprise knowledge

in real time.

Challenges of Autonomic Computing

During the implementation of autonomic computing

some related practices
29,33

show that self-managing,

adaptive computing systems can be realized, and

have a great perspective. However, developing those

autonomic systems are “beyond the boundaries of

traditional computer sciences”
34

 and requires a

global cooperation of research in diverse fields. The

architecture of autonomic computing simplified this

work in a large scale, but caused also some new

challenges. These challenges can be divided into

three categories: standardization challenges,

algorithms and methods challenges and management

challenges.

Standardization Challenges

Autonomic computing is an open computing; it

needs a common, standard model in

multidimensional.

Representation of autonomic element needs

standardization. An autonomic element may

represent a special business or scientific objective,

and its services should be shared by other autonomic

elements. Thus an open, standard model for

autonomic element is needed to design autonomic

elements.

Knowledge management needs standardization. In

the architecture of autonomic computing knowledge

is shared in the implementation of managed loop. In

the analyze phase, autonomic computing needs to

understand the meaning of monitored data

autonomously and selects the useful information

from them. This requires (a) a common log format

for the understanding of monitored data; and (b) a

common event correlation to determine useful

expressions.

Services sharing and parameters’ negotiation

between different autonomic elements need

standardization. Different autonomic elements

should operate in an unpredictable environment as a

whole. They need to utilize their resources

efficiently and to be aware of presence of other

autonomic elements and external environment. To

achieve it, services should be discovered

autonomously and be shared within those autonomic

elements. This requires a standardization of

negotiation protocol, for example, service discovery

protocol and service utilization protocol.

System wide collaboration needs standardization.

Various autonomic elements collaborate with each

other and form a great autonomic computing system.

The coordination between different autonomic

elements is usually policy-based. These policies

should (a) exactly express the goal of the complex

system; and (b) be understandable by underlying

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 49

autonomic elements. Some projects
35

 attempt to

solve this problem, but a standardization of policy in

autonomic computing is still required.

Algorithms and Methods Challenges

Autonomic computing needs a global co-operation in

diverse fields. To develop autonomic computing,

some algorithms and methods should be newly

researched.

Learning algorithm

Learning algorithm is closely tied to autonomic

computing. From problem determination and

autonomic remediation to system wide optimization,

learning algorithms are used everywhere, but under

new conditions, namely, critical services should not

be disrupted. The exploration of learning algorithms

is different from the traditional one. How exact an

error can be allowed, how to improve the

performance of learning process, and how to

coordinate different learning process, all of that

remain a research challenge.

Process co-ordination methods

Autonomic computing system consists of a large

scale of autonomic elements. Each of them

represents a different objective (i.e, database,

webserver) and expresses different optimization

criteria. Within an autonomic element there run also

many processes. How to coordinate such large

number of processes to optimize, configure and

reconfigure remains a research challenge.

Attack detection methods

With autonomic computing exchange of information

is accomplished in a autonomous way. Autonomic

element need not only to understand the incoming

information but also to detect active attacks and

protect itself against those attacks.

Management Challenges

The goal of autonomic computing is to reduce the

tasks of nowadays administrators. To achieve it,

there need new techniques to monitor and visualize

what autonomic computing and its autonomic

elements do. These techniques must be “sufficiently

expressive of preferences regarding cost vs.

performance, security, risk and reliability”
34

.

Table No.1: Fault Categories

S.No
Fault Classes Possible Failure Resolution

Crash failure State recovery and restart

1 Fail-stop Stable storage status reconstruction and partition of remaining work

2 Omission Re-route, retransmission

3 Transient Recovery of side effects

4 Timing and Performance Re-assignment of task

5 Security Behavior dependent

6 Arbitrary Reconstruction, resend and ignore

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 50

Figure No.1: Typical procedures implemented in various IT organizations

Figure No.2: Self-healing System Process

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 51

Figure No.3: Relations and properties of self-healing research

Figure No.4: Staged loop of self-healing

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 52

Figure No.5: State diagram of self-healing

Figure No.6a: General Computing System

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 53

Figure No.6b: Autonomic Computing Self-Healing System

CONCLUSION

Autonomic computers that self-heal themselves

basically endure a process in order to maintain

satisfactory quality of service of the principle system

during runtime in the presences of any fault. The

process is a closed loop cycle that consists of a

monitoring cycle, an error detection and diagnosis

cycle, analysis and a selection of a repair operation

cycle, and an execute repair operation cycle. Each

self-healing system process has a fault model in

terms of what faults they are expected to be able to

self-heal because without a fault model there is no

way to assess whether a system actually can heal

itself in situation of interest. There are many

advantages of autonomic computing systems. As

well as addressing complexity, autonomic computing

offers the promise of a lower cost of ownership and a

reduced maintenance burden as systems become

self-managing. Nonetheless, there are some

limitations also to this vision. The challenges of re-

engineering today’s systems of systems away from

the complexity dilemma toward tomorrow’s

persuasive and ubiquitous computations and

communications will require unifying standards, new

economic models and trust of the users, as well as

innovations to address the hard technical issues.

IBM’s vision of autonomic computing is much like a

journey than a destination. The journey to achieve

the ultimate vision of autonomic systems has just

begun. This new era of computing is greater than any

single IT company. Many universities are exploring

various aspects of autonomic computing such as self-

configuring, self-healing, self-optimizing, self-

protecting, grid computing, and routing. Increasing

constraints on resources and greater focus on the cost

of operations, has led NASA and others to utilize

autonomy. Achieving overall autonomic behaviors

remains an open and significant challenge, which

will be accomplished through a combination of

process changes, skills evolution, new technologies

and architecture, and open industry standards.

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 54

ACKNOWLEDGEMENT

I’m very thankful to Eritrea Institute of Science and

Technology, Asmara, Eritrea, North East Africa and

I would also like to thank the Management of

International Computing Council, for provided the

necessary facilities to carry out this Research work.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

BIBLIOGRAPHY

1. Sterritt Roy M, Parashar H Tianfiels and

Unland R. A concise introduction to

autonomic computing, Advanced

Engineering Informatics, 2(8), 2005, 320-

567.

2. Ganek A G and Corbi T A. The dawning of

the autonomic computing era, IBM System

Journal, 42(1), 2003, 245-589.

3. Tosi and Davide. “Research perspective in

self-healing systems”, IEEE Computing, 4(1),

2004, 10-45.

4. Ganek A G, Corbi T A. The dawning of the

autonomic computing era, IBM Syst J, 42(1),

2003, 5-18.

5. Pierce W. Failure-tolerant computer design,

Academic Press, New York, 3(4), 1965, 120-

340.

6. Ghosh D, Sharman R, Raghav Rao H,

Upadhyaya S. Self-healing systems survey

and synthesis, Decis Support Syst, 42(4),

2007, 2164-2185.

7. Ellison R, Fisher D, Linger R, Lipson H,

Longstaff T, Mead N. Survivability:

protecting your critical systems, Internet

Comput IEEE, 3(6), 1999, 55-63.

8. Linger R, Mead N, Lipson H. Requirements

definition for survivable network systems,

ICRE’98, 2(5), 1998, 6-10.

9. Merideth M. Enhancing survivability with

proactive fault-containment, DSN Student

Forum, Citeseer, 20(3), 2003, 300-670.

10. Akoglu A, Sreerama reddy A, Josiah J.

FPGA based distributed self-healing

architecture for reusable systems, Cluster

Comput, 12(3), 2009, 269-284.

11. Corsava S, Getov V. Intelligent architecture

for automatic resource allocation in computer

clusters, IEEE Computer Society,

Washington, DC, 17(3), 2003, 201-1.

12. Huebscher M C, McCann J A. A survey of

autonomic computing, Degrees, models, and

applications, 8(2), 2008, 120-300.

13. IBM: An architectural blueprint for

autonomic computing, IBM, 15(8), 2005,

456-536.

14. Kephart J O, Chess D M. The vision of

autonomic computing, Comput IEEE Comput

Soc Press, 36(1), 2003, 41-50.

15. Salehie M, Tahvildari L. Self-adaptive

software: landscape and research challenges,

ACM Trans Auton Adapt Syst, 4(2), 2009, 1-

42.

16. Parashar M, Hariri S. Autonomic computing:

an overview. In: Unconventional

programming paradigms, Springer, Berlin,

14(5), 2005, 247-259.

17. White S, Hanson J, Whalley I, Chess D,

Kephart J: An architectural approach to

autonomic computing, In: Proceedings

international conference on autonomic

computing, 2(3), 2004, 2-9.

18. Clarke E M, Grumberg O. Avoiding the state

explosion problem in temporal logic model

checking, ACM Symposium on Principles of

distributed computing, ACM, New York, 6(1),

1987, 294-303.

19. Alpern B, Schneider F B. Verifying temporal

properties without temporal logic, ACM

Trans Program Lang Syst, 11(1), 1989, 147-

167.

20. Picard R W. Affective computing, The MIT

Press, Cambridge, 23(4), 1997, 570-780.

21. Sloman A, Croucher M. Why robots will

have emotions, In: Proceedings IJCAI, 4(3),

1981, 456-567.

22. Norman D A, Ortony A, Russell D M. Affect

and machine design: lessons for the

development of autonomous machines, IBM

Syst J, 42(1), 2003, 38-44.

23. Kephart J, Walsh W. An artificial

intelligence perspective on autonomic

Raja Adeel Ahmed et al. / International Journal of Engineering and Robot Technology. 1(2), 2014, 41 - 55.

Available online: www.uptodateresearchpublication.com July – December 55

computing policies, POLICY, 5(1), 2004, 3-

12.

24. Coulouris G, Dollimore J, Kindberg T.

Distributed systems: concepts and design,

Addison- Wesley Longman Publishing Co.,

Inc., Boston, 3(2), 1994, 210-250.

25. Kopetz H. Real-time systems: design

principles for distributed embedded

applications, Springer, Berlin, 20(4), 1997,

234-467.

26. Philip Koopman. Elements of the Self-

Healing System Problem Space, ICSE-

WADS, 4(3), 2003, 34-123.

27. IBM Corporation: Automating problem

determination: a first step towards self-

healing computer systems, IBM, 2003.

28. IBM: Autonomic computing toolkit,

(available via http://www-

128.ibm.com/developerworks/autonomic/sub

link5.html).

29. Microsoft: System definition model overview

white paper, (available via

http://www.microsoft.com/windowsserversys

tem/dsi/sdmwp.mspx).

30. Berkeley: Oceanstore, (available via

http://oceanstore.cs.berkeley.edu).

31. IBM: Optimalgrid, (available via

http://www.alphaworks.ibm.com/tech/optima

lgrid).

32. IBM: Policy management for autonomic

computing, (available via

http://www.alphaworks.ibm.com/tech/pmac).

33. HP: Adaptive enterprise strategy, (available

via

http://h41111.www4.hp.com/enterprise/de/de

/ae/index.html).

34. Kephart J O. Research challenges of

autonomic computing, (available via

http://portal.acm.org/citation.cfm?id=106246

4&dl=&coll=GUIDE&CFID=15151515&CF

TOKEN=6184618).

Please cite this article in press as: Raja Adeel Ahmed et al. Methodologies of Self-Healing and System Confronts

(The Autonomic Computing), International Journal of Engineering and Robot Technology, 1(2), 2014, 41 - 55.

